The Use of Micro Computed Tomography in Plastic Surgery: Towards a Better Understanding of Flaps Microvascular Architecture

Alexis Laungani MD, Erik L Ritman MD PhD, Nirusha Lachman PhD, Jodie Christner PhD, Andrew Vercnocke Medical Imaging Analyst, Steven Jorgensen Engineer, Jill Anderson Research Technologist, Terry Regnier Dir. Anatomical Services, Michel Saint-Cyr MD

American Society of Plastic surgeons
San Diego, CA
October 11-15th, 2013
Disclosures

- No Disclosures
Background

- 2008: Use of 3D and 4D CT Angiography for flap perfusion investigation
 - 2009: Definition of the Perforasome theory, with direct linking vessels and indirect linking vessels (subdermal plexus, also called “choke vessels” by Taylor, Palmer and Morris)
 - Poor resolution of classic CT Scanner for the assessment of the subdermal plexus and flap microvascular architecture

Fresh cadavers acquired through the Anatomy Department at Mayo Clinic, Rochester MN after IRB approval

First step: Study of the vascularization of a whole region (thigh and abdomen) with AngioCT and Micro AngioCT

Second step: Study of the vascularization of perforator flap harvested from the thigh (ALT flap) and the abdomen (DIEP flap) with AngioCT and Micro AngioCT

Analysis of the results
Methodology – Flap Harvest (First Step)

- Canulation of the Deep Inferior Epigastric Artery at its origin
- Canulation of Lateral Circumflex Femoral Artery at its origin
- Injection of Microfil (Flow Tech Inc., Carver, MA) under pressure monitoring, at physiologic pressure of 120-130 mmHg
- Polymerization of the Microfils during 48 h
- Harvest of the whole abdominal fasciocutaneous flap
- Harvest of the whole anterolateral thigh region
Methodology – Flap Harvest (Second Step)

Dissection of a hemi-DIEP flap

Cannulation of the largest dominant perforator

Injection of Microfil (Flow Tech Inc., Carver, MA) under pressure monitoring, at physiologic pressure of 120-130 mmHg, directly in the cannulated perforator

Polymerization of the Microfils during 48 h

Dissection of a hemi-DIEP flap
Methodology – CT Scanner

- AngioCT Scanner of the specimen (Definition, Siemens Healthcare, Forchheim, Germany)
- Analysis of the images
- Incorporation of radio-opaque marks on the specimen, in order to define the specimen to be sent for Micro-CTScanner processing

Example of a 3D rendering of a classic CT Scanner image (GULF Flap)
Microcomputed tomography (micro-CT) scanner

- generates three-dimensional (3-D) images consisting of up to a billion cubic voxels, each 5–25 μm on a side
- isotropic spatial resolution

The duration of each scan depends on the magnification desired (normally 20 μm cubic voxel but also 10 and 5 μm cubic voxels)

Results - Abdomen

* Injected perforator

Whole abdomen (DIEA injected)

DIEP Flap (largest perforator injected)

DIEP Flap with vessel tracking
Results - Abdomen

Clear visualization of the subdermal plexus (indirect linking vessels)

Visualization of 3 adjacent perforators filled by direct flow through the direct linking vessels and recurrent flow through indirect linking vessels
Results – Abdomen
Contribution of the dermis in DIEP Flap Perfusion

- Application of the technology for a study with direct clinical impact

- AIM = To study the impact of dermis removal on a DIEP flap before inset of the flap in breast reconstruction (instead of meticulous de-epithelialization)

 - 12 Hemi-DIEP flaps harvested
 - Scanned after contrast injection in the largest cannulated perforator
 - Contrast flushed out and dermis removed with cautery
 - Flap reinjected and rescanned

- RESULTS: Mean difference in flap perfused percentage = 26%
DERMIS & SUBDERMAL PLEXUS

Injected perforator

Perforator filled through indirect linking vessels (recurrent flow)

DERMIS REMOVED

Loss of adjacent perforator filling

DIEP FLAP WITH AND WITHOUT DERMIS
Vascular architecture is organized in 3 main components:

1) Deep at the level of the subcutaneous fat: direct linking vessels
2) Superficial at the level of the skin: subdermal plexus (indirect linking vessels)
3) Communicating branches between direct and indirect linking vessels
Results – Thigh (ALT Flap)

ALT Flap
Advantage:
- High Voxel definition
- Visualization of microvascular structures (cf. subdermal plexuses in flaps)

Inconvenient:
- Small specimen (max size 2cm x 2cm x 2cm per scanner)
- Expensive: $350/scanner
- Requires a trained team (engineers, analysts)

New tool in flap perfusion research, with clinical impact (cf. DIEP flap perfusion and dermis removal)