Adipogenic Potential of Adipose-Derived Stromal Cell Subpopulations Enriched For Bone Morphogenetic Protein Receptor IA

Stanford University, Division of Plastic and Reconstructive Surgery, ASPS 2013
Authors

Kevin J. Paik, A.B., Michael T. Chung, B.S., Michael T. Longaker, M.D., M.B.A., and Derrick C. Wan, M.D.

Special thanks goes to Dr. Greenberg, Dr. Kim, Dr. Commons, and the staff at the Plastic Surgery Center of Palo Alto.

All authors have nothing to disclose.
Objective

- Adipose-derived Stromal Cells (ASCs) have been shown to assist fat grafts—“Cell-Assisted Lipotransfer” (CAL)
- Can a subpopulation of ASCs, sorted for Bone Morphogenetic Protein Receptor Type IA (BMPR-IA), demonstrate enhanced adipogenesis for potential use in CAL?
Methods

- Sort fresh ASCs for BMPR-IA using magnetic-activated cell sorting (MACS)
- Treat sorted ASCs with adipogenic differentiation medium
- Assess for lipid formation with Oil Red-O
- Assess gene expression with qRT-PCR
- Assess cell viability when sorted ASCs are co-cultured with adipocytes
In Vitro Results, ORO Staining

- BMPR-IA+
- BMPR-IA-
- Unsorted
In Vitro Results, qRT-PCR

Adipogenic Gene Expression After 7 Days of Adipogenic Differentiation

- **Expression Normalized to B-Actin**

- **FABP4**
 - BMPR-IA+
 - BMPR-IA-
 - Unsorted

- **LPL**
 - BMPR-IA+
 - BMPR-IA-
 - Unsorted

- **PPARG**
 - BMPR-IA+
 - BMPR-IA-
 - Unsorted

*denotes statistically significant difference (p<0.05) compared to BMPR-IA- and Unsorted ASCs
In Vitro Results, qRT-PCR

Angiogenic Growth Factor Expression, % Change After 7 Days of Adipogenic Differentiation

*denotes statistically significant difference (p<0.05) among groups
In Vitro Results, XTT Assay

Co-Culture of ASC's and Mature Adipocytes

- BMPR-IA+ with Adipocytes
- BMPR-IA- with Adipocytes
- Adipocytes only

* Denotes statistically significant difference (p<0.05) compared to BMPR-IA- and control
Conclusions

- Subpopulations of ASCs with enhanced adipogenesis can be identified and sorted for
- Potential clinical use: Cell-Assisted Lipotransfer performed with adipogenic and/or angiogenic ASC subpopulations