Is It Possible To Increase Flap Viability By Hydrostatic Dilation? An Experimental Study In The Rat Abdominal Fasciocutaneous Flap Model

Cihan SAHIN, Bilge Kagan AYSAL, Ozge ERGUN

Nothing to Disclose
Is It Possible To Increase Flap Viability By Hydrostatic Dilation?
An Experimental Study In The Rat Abdominal Fasciocutaneous Flap Model

OBJECTİVE

To investigate the effect of hydrostatic dilation on a fasciocutaneous flap model as an alternative method to surgical delay.
Is It Possible To Increase Flap Viability By Hydrostatic Dilation?
An Experimental Study In The Rat Abdominal Fasciocutaneous Flap Model

18 Wistar rats were used (6 rats in each group)

- Control group
- Surgical delay group
- Hydrostatic dilation group
Is It Possible To Increase Flap Viability By Hydrostatic Dilation?
An Experimental Study In The Rat Abdominal Fasciocutaneous Flap Model

Control Group

- The flaps were elevated based on the right-sided superficial inferior epigastric (SIE) vessels
Is It Possible To Increase Flap Viability By Hydrostatic Dilation?
An Experimental Study In The Rat Abdominal Fasciocutaneous Flap Model

Delay Group

- The delay procedure was applied to the animals in the delay group on their left sides one week before the flap elevation.
Is It Possible To Increase Flap Viability By Hydrostatic Dilation?
An Experimental Study In The Rat Abdominal Fasciocutaneous Flap Model

Hydrostatic Dilation Group

- An isotonic solution was injected over 1 minute.
- During the injection, the pressure was stabilized at 300 mm Hg on average.
We calculated the necrotic area after the excision of the flaps.
Is It Possible To Increase Flap Viability By Hydrostatic Dilation?
An Experimental Study In The Rat Abdominal Fasciocutaneous Flap Model

Mean Values of Necrotic Areas of Flaps

<table>
<thead>
<tr>
<th></th>
<th>CONTROL</th>
<th>DELAY</th>
<th>DILATATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46.61</td>
<td>31.55</td>
<td>29.11</td>
</tr>
<tr>
<td>2</td>
<td>44.96</td>
<td>22.37</td>
<td>28.99</td>
</tr>
<tr>
<td>3</td>
<td>52.11</td>
<td>33.68</td>
<td>37.53</td>
</tr>
<tr>
<td>4</td>
<td>46.90</td>
<td>40.87</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>38.69</td>
<td>41.28</td>
<td>38.86</td>
</tr>
<tr>
<td>6</td>
<td>45.25</td>
<td>30.18</td>
<td>26.06</td>
</tr>
<tr>
<td>7</td>
<td>45.75±4.31</td>
<td>33.32±7.11</td>
<td>32.51±5.03</td>
</tr>
</tbody>
</table>
Is It Possible To Increase Flap Viability By Hydrostatic Dilation?
An Experimental Study In The Rat Abdominal Fasciocutaneous Flap Model

- we examined the vascularization in angiographic images by dividing them into three zones
- the increased vascularity in the delay and hydrostatic dilation groups was remarkable
CONCLUSION

We consider intraoperative hydrostatic dilation to be a feasible method to improve circulation in compromised tissue.