The Application of 3D Images for Quantitative Determination of Zygoma in an Asian Population

Shih-Hsuan Mao, Yu-Hsuan Hsieh, Chih-Hao Chen, Chien-Tzung Chen

Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taiwan Nothing to Disclose

introduction

commonly fracture of zygoma

zygomatic complex is the most prominent and most commonly fracture in midface

postoperative asymmetry

asymmetry and poor aesthetic outcomes in 10% of patients

insufficient if realign bones only

both skeletal and soft tissue affects outcomes

tools for more accuracy

is there anthropometric methods for quantitative evaluation?

Czerwinski, 2005

Quantitative topographical evaluation

It is accurate in soft tissue, but

- time consuming
- inconvenient to repeat
- poor evaluation of bone

Cephalometry

It is convenient and fast, but

- overlapped structure
- measurement errors from positioning

Lane, 2008

Traditional CT

It is accurate in bone tissue, but

 measurement errors from positioning

3D digital photogrammetry system

It is accurate in soft tissue, but

- image distortion
- poor evaluation of bone
- costly

our solutions

insufficient tools

none of the methods is able to measure both soft and hard tissues simultaneously.

CT 3D images

- Increase in resolution of CT images
- Widely applications of 3D images

computer-assisted system

Amira®

our aims

idealization of anthropometry

- fast and accurate
- regardless of position at image acquisition
- measure both bone and soft tissues simultaneously

3D CT images processed by Amira®

- determine the reference points and distance values
- examine the accuracy and repeatability
- determine symmetry from bilateral values

materials & methods

20 Taiwanese adults randomly selected underwent craniofacial CT

- 10 male
- 10 female

Inclusion criteria

- bilateral zygoma intact
- no zygomatic injuries
- trauma surveys negative

Exclusion criteria

- congenital anomalies of face
- injuries of zygoma
- prior surgical history

protocols

CT Acquisition at initial presentation (ER)

Frankfort horizontal position by Amira®

CT data (DICOM) to STL files by Amira®

Measurement of references distances

American Society of Plastic Surgeons @ Chicago, 2014

reference points and axis

Nasion (n) point in midline of nasal root and nasofrontal suture

Orbitale (or) lowest point on inferior orbital rim

Zygion (zy) most lateral point on zygomatic arch

Maxillozygion (mz)

most prominent point on frontal aspect of face, below bony orbit

Opisthocranio n (op)

most posterior point of head at FH position

Vertex (v) highest point of head at FH

results of measurements

Bone tissues

Soft Tissues

no significant difference bilaterally (P < 0.05)

results of measurements

	inter-subject variability (SD1)	inter-measurement variability (SD2)
Bone	3.1-9.2 mm	0.7-1.6 mm
Soft Tissue	1.8-9.3 mm	0.1-1.8 mm

inter-subject

- relatively small compared to the mean
- relatively constant position of zygoma in skull

inter-measurement

- SD2 < 2 mm
- clinical insignificant for repetitive errors
- unable to detect in experience surgeons

clinical significance

Positioning

- mis-positioning leads to errors
- no adjustment required before CT images acquirement
- proper positioning by Amira[®]

Symmetry

- no significant difference between both sides (P < 0.05)
- allowing comparison for establishing symmetry with unilateral lesion

conclusion

3D facial CT with Amira®

Time-saving, accurate, consistent

asymmetrical determination

determining degree of asymmetry by quantitative comparison of ipsilateral side

measurement of skeletal and soft tissue

both tissue can be assessed separately and accurately

tool for comparison

accurately determine the surgical outcomes among different techniques on zygoma

future works

restore symmetry

mirroring the contralateral side of zygomatic complex assisting symmetry intraoperatively

reference database

more data as a reference database for quantitative evaluation

dynamic relation

evaluate the dynamic state between skeletal and soft tissues for better post-operative estimation

navigation

guide of intraoperative navigation