Title:

Is There a Preferable Acellular Dermal Matrix - Breast Implants Match : A Comparative Electron Microscopy Scanning of Two Different Implant-Matrix Interfaces <u>Danino MA</u>, <u>Moreau M, Cassier S, C Bernier, A Gagnon J Boumeherri</u>, <u>Maalouf C, Isadpanah A, Giot JP</u>

Disclosure/Financial Support: M Alain Danino is a consultant for Allergan and Johnson and Johnson None of the authors has a financial interest in any of the products, devices, or drugs mentioned in this manuscript.

Introduction

Our goal is to characterize the ultrastructure at the interface of two textured expanders (Allergan BIOCELL® and Mentor SILTEX®) and an Acellular Dermal Matrix Alloderm®, through a prospective randomized study, using scanning electron microscopy.

Methods

We prospectively included who had a two stages breast reconstruction with an acelullar dermal matrix Alloderm®. Five patients had a Mentor Siltex® expander and 5 had an Allergan Biocell ® expander.

Two cm² periprosthetic capsule specimens were sampled en bloc with the implant during expander to permanent implant exchange. One at the junction between Alloderm® and the pectoralis major muscle and one at the site of Alloderm® All samples were analyzed under SEM using High Vacuum (HiVac) modes and Energy dispersive X-ray (EDX) studies. Observations were charted in order to tally and objectivise three parameters: texture/cellularity/presence of biofilm and bacteria

These measurements were performed using Adobe Photoshop software (Adobe® Photoshop® CS6 Extended). This software allows for measurements of distance between two points on an image with a 2% margin of error

Results:

In Group 1: Biocell®/Alloderm ®, We found no macro texture ingrowth of the capsule on the pores of the textured implants (Velcro-effect) at the implant-matrix interface. And a strong bacterial colonization of the implant porous surface, with presence of biofilm in 3 cases.

In group 2 Siltex® / Alloderm ®, we found a smooth capsule surface but significantly less bacterial and no biofilm development

Conclusion

The lack of Velcro effect on the Biocell® implant in front of Alloderm ®, facilitate bacterial seeding, propagation and the formation of a biofilm in 3 of the specimens.

The findings can help guide clinical decision making with regards to selecting the most optimal implant surface when employing an acelullar dermal matrix, in order to minimize long-term complications.

References

L S. Paek, J-P Giot , J-O Tétreault-Paquin, S St-Jacques, M Nelea, **M. A Danino**. The Impact of Postoperative Expansion Initiation Timing on Breast Expander Capsular Characteristics: A Prospective Combined Clinical and Scanning Electron Microscopy Study Plastic and reconstructive surgery Plast Reconstr Surg. 2015 Apr;135(4):967-974. PubMed PMID: 25811562.

J-P GIOT , L S. PAEK, NIZARD N, EL-DIWANY M , GABOURY L, M NELEA, HARRIS PG, **M. A DANINO** The double capsules in macro-textured breast implants. Biomaterials. 2015 Oct;67:65-72. doi: 10.1016/j.biomaterials.2015.06.010. Epub 2015 Jun 23. PubMed PMID: 26210173.