

Assessment of the Effect of Autograft Orientation on Peripheral Nerve Regeneration Utilizing Diffusion Tensor Imaging

Ashkan Afshari MD, Lyly Nguyen MD, Nathaniel Kelm BS, Justine S Kim BS, Nancy Cardwell BS, Alonda Pollins MS, Ravinder Bamba MD, R Bruce Shack MD, Mark Does PhD, Wesley P Thayer MD PhD

Disclosure: The authors have nothing to disclose.

Nerve Autograft

- Few studies to evaluate the effect of autograft polarity.
 - Limited by number of assessment tools.
- No consensus on role of autograft orientation.

Purpose

 Evaluate the effect of autograft orientation on nerve recovery using multiple assessments tools, including DTI.

Methods (Design)

Methods (Microsurgery)

Sham

Normal Orientation

Reverse Orientation

Behavior: Sciatic Function Index

Hind limbs inked and animal walks up an inclined plank

- Markings measured and inserted into a validated formula
- Greater impairment demonstrated by more negative score

 $SFI = -38.3 \times \left(\frac{EPL - NPL}{NPL}\right) + 109.5 \times \left(\frac{ETS - NTS}{NTS}\right) + 13.3 \times \left(\frac{EIT - NIT}{NIT}\right) - 8.8$

Behavior: Foot Fault

- Animals allowed to take 50 steps/hind limb on wired grid, and number of foot faults (FF) recorded
 - Partial FF (through grid without touching base) = 1 point
 - Full FF (through grid and touches base)= 2 points
- Foot Fault Asymmetry Score = %foot fault (surgical hind limb) %foot fault (normal hind limb)

Muscle Net Weight

 Net weight (gm)= weight (normal limb gastrocnemius/soleus m.)- weight (surgical limb gastrocnemius/soleus m.)

Histology

Immunohistochemistry

 5 μm thick, Cholineacetyltransferase (ChAT) stained for motor axon counts at 10X

Toluidine Blue

- 1 μm thick sections
- Axon count, density and diameter at 40X

Diffusion Tensor Imaging (DTI)

- Common tool used in evaluation of CNS; emerging MRI technique for PNS.
- Relies on diffusion of water molecules within tissue.
- Fractional anisotropy, axial and radial diffusivity, and tractography data obtained.

Lehmann HC, Zhang J, Mori S, Sheikh KA. Diffusion tensor imaging to assess axonal regeneration in peripheral nerves. *Exp Neurol.* 2010;223(1):238-44. Sheikh KA. Non-invasive imaging of nerve regeneration. *Exp Neurol.* 2010;223(1):72-6.

Results: Behavior studies

*No difference in FF or SFI between normal and reverse autografts

Results: Muscle Net Weight

*No difference between autograft groups

Results: Motor IHC

Proximal Graft Distal

Sham

Normal Orientation

*No difference in motor axon count between normal and reverse autografts at any nerve segment

Results: Toluidine Blue

Results: DTI

Comparison of DTI parameters between normal and reverse autografts at all nerve segments

	Proximal	IQR	р	Graft	IQR	р	Distal	IQR	р
Fractional Anisotropy (FA)					<u> </u>				
Sham	0.70	0.68, 0.72							
Normal Orientation	0.55	0.49, 0.57	0.57	0.59	0.50, 0.64	0.57	0.56	0.48, 0.61	1.00
Reverse Orientation	0.53	0.49, 0.56		0.55	0.53, 0.60		0.54	0.51, 0.58	
Axial Diffusivity (AD)					•				
(μm²/ms)									
Sham	0.82	0.80, 0.85							
Normal Orientation	0.82	0.78, 0.83	1.00	0.78	0.69, 0.79	0.57	0.77	0.75, 0.78	1.00
Reverse Orientation	0.81	0.76, 0.87		0.76	0.75, 0.83		0.77	0.76, 0.82	
Radial diffusivity (RD)									
(μm²/ms)									
Sham	0.24	0.22, 0.25							
Normal Orientation	0.34	0.34, 0.37	0.57	0.32	0.29, 0.34	0.57	0.34	0.32, 0.37	1.00
Reverse Orientation	0.38	0.34, 0.44	1	0.34	0.31, 0.39	1	0.35	0.33, 0.40	

IQR: interquartile range; Statistical significance, p<0.05.

Proximo-distal axonal growth demonstrated in normal and reverse autografts

^{*}No difference in FA, AD, RD between normal and reverse autografts at any nerve segment

Conclusion

- Nerve regeneration was similar in reverse- and normal-oriented autografts.
- Autograft polarity may not influence nerve regenerative outcomes.
- Nerve repairs utilizing non-branched autografts should be performed using principles (i.e. best fascicular alignment) other than orientation to maximize regeneration.